Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 250: 121065, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159541

RESUMO

Urbanization and the persistent environmental changes present a major challenge for urban freshwaters and availability of water for humans and wildlife. In order to increase understanding of urban ecohydrology, we investigated the variability of planktonic bacteria and benthic diatoms - as two key biological indicators - coupled with insights from hydrochemistry and stable water isotopes across four urban streams characterized by different dominant water sources in Berlin, the German capital, over a period of one year (2021-2022). DNA metabarcoding results show that substantial spatio-temporal variability exists across urban streams in terms of microbial diversity and richness, with clear links to abiotic factors and nutrient concentrations. Bacterial communities showed clear distinction between effluent-impacted and non-effluent impacted streams as well as clear seasonal turnover. In-stream benthic diatom assemblages also showed robust seasonal variation as well as high species diversity. Our multiple-tracer approach is relevant for emerging questions regarding the increased use of treated effluent to supplement declining baseflows, the assessment of stream restoration projects and the impact of storm drainage and surface pollution on aquatic ecosystem health. eDNA analysis allows analysis of spatial and temporal patterns not feasibly studied with traditional analyses of macroinvertebrates. This can ultimately be leveraged for future water resource management and restoration planning and monitoring of urban freshwater systems across metropolitan areas.


Assuntos
DNA Ambiental , Diatomáceas , Humanos , Animais , Monitoramento Ambiental/métodos , Ecossistema , Água , Urbanização , Bactérias/genética , Rios/microbiologia , Invertebrados
2.
Biol Lett ; 19(12): 20230398, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087939

RESUMO

The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.


Assuntos
Microsporídios , Microsporídios/genética , Filogenia , Genoma Fúngico , Genômica , Nucleotídeos , Trifosfato de Adenosina
3.
PeerJ ; 11: e16022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842065

RESUMO

Background: Broad-scale monitoring of arthropods is often carried out with passive traps (e.g., Malaise traps) that can collect thousands of specimens per sample. The identification of individual specimens requires time and taxonomic expertise, limiting the geographical and temporal scale of research and monitoring studies. DNA metabarcoding of bulk-sample homogenates has been found to be faster, efficient and reliable, but the destruction of samples prevents a posteriori validation of species occurrences and relative abundances. Non-destructive metabarcoding of DNA extracted from collection medium has been applied in a limited number of studies, but further tests of efficiency are required with different trap types and collection media to assess the consistency of the method. Methods: We quantified the detection rate of arthropod species when applying non-destructive DNA metabarcoding with a short (127-bp) fragment of mitochondrial COI on two combinations of passive traps and collection media: (1) water with monopropylene glycol (H2O-MPG) used in window-flight traps (WFT, 53 in total); (2) ethanol with monopropylene glycol (EtOH-MPG) used in Malaise traps (MT, 27 in total). We then compared our results with those obtained for the same samples using morphological identification (for WFTs) or destructive metabarcoding of bulk homogenate (for MTs). This comparison was applied as part of a larger study of arthropod species richness in silver fir (Abies alba Mill., 1759) stands across a range of climate-induced tree dieback levels and forest management strategies. Results: Of the 53 H2O-MPG samples from WFTs, 16 produced no metabarcoding results, while the remaining 37 samples yielded 77 arthropod MOTUs in total, of which none matched any of the 343 beetle species morphologically identified from the same traps. Metabarcoding of 26 EtOH-MPG samples from MTs detected more arthropod MOTUs (233) than destructive metabarcoding of homogenate (146 MOTUs, 8 orders), of which 71 were shared MOTUs, though MOTU richness per trap was similar between treatments. While we acknowledge the failure of metabarcoding from WFT-derived collection medium (H2O-MPG), the treatment of EtOH-based Malaise trapping medium remains promising. We conclude however that DNA metabarcoding from collection medium still requires further methodological developments and cannot replace homogenate metabarcoding as an approach for arthropod monitoring. It can be used nonetheless as a complementary treatment when enhancing the detection of soft-bodied arthropods like spiders and Diptera.


Assuntos
Biodiversidade , Dípteros , Animais , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Dípteros/genética , Etanol , Glicóis
4.
Oecologia ; 201(2): 513-524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680607

RESUMO

Stream ecosystems are spatially heterogeneous, with many different habitat patches distributed within a small area. The influence of this heterogeneity on the biodiversity of benthic insect communities is well documented; however, studies of the role of habitat heterogeneity in species coexistence and assembly remain limited. Here, we investigated how habitat heterogeneity influences spatial structure (beta biodiversity) and phylogenetic structure (evolutionary processes) of benthic stonefly (Plecoptera, Insecta) communities. We sampled 20 sites along two Alpine rivers, including seven habitats in four different reaches (headwaters, meandering, bar-braided floodplain, and lowland spring-fed). We identified 21 morphological species and delineated 52 DNA-species based on sequences from mitochondrial cox1 and nuclear ITS markers. Using DNA-species, we first analysed the patterns of variation in richness, diversity, and assemblage composition by quantifing the contribution of each reach and habitat to the overall DNA-species diversity using an additive partition analysis and distance-based redundancy analysis. Using gene-tree phylogenies, we assessed whether environmental filtering could lead to the co-occurrence of DNA-species using a two-step analysis to detect a phylogenetic signal. All four reaches significantly contributed to DNA-species richness, with the meandering reach having the highest contribution. Habitats had an effect on DNA-species diversity, where glide, riffle and, pool influenced the spatial structure of stonefly assemblage possibly due to the high habitat heterogeneity. Among the habitats, the pool showed significant phylogenetic clustering, suggesting high levels of evolutionary adaptation and strong habitat filtering. This assemblage structure may be caused by long-term stability of the habitat and the similar requirements for co-occurring species. Our study shows the importance of different habitats for the spatial and phylogenetic structure of stonefly assemblage and sheds light on the habitat-specific diversity that may help improve conservation practices.


Assuntos
Ecossistema , Insetos , Animais , Filogenia , Biodiversidade , DNA
5.
Curr Biol ; 32(16): 3628-3635.e3, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35830854

RESUMO

Phylogenomic analyses have boosted our understanding of the evolutionary trajectories of all living forms by providing continuous improvements to the tree of life.1-5 Within this tree, fungi represent an ancient eukaryote group,6 having diverged from the animals ∼1.35 billion years ago.7 Estimates of the number of extant species range between 1.5 and 3.8 million.8,9 Recent reclassifications and the discovery of the deep-branching Sanchytriomycota lineage10 have brought the number of proposed phyla to 20,11 21 if the Microsporidia are included.12-14 Uncovering how the diverse and globally distributed fungi are related to each other is fundamental for understanding how their lifestyles, morphologies, and metabolic capacities evolved. To date, many of the proposed relationships among the phyla remain controversial and no phylogenomic study has examined the entire fungal tree using a taxonomically comprehensive dataset and suitable models of evolution. We assembled and curated a 299-protein dataset with a taxon sampling broad enough to encompass all recognized fungal diversity with available data, but selective enough to run computationally intensive analyses using best-fitting models. Using a range of reconstruction methods, we were able to resolve many contested nodes, such as a sister relationship of Chytridiomyceta to all other non-Opisthosporidia fungi (with Chytridiomycota being sister to Monoblepharomycota + Neocallimastigomycota), a branching of Blastocladiomycota + Sanchytriomycota after the Chytridiomyceta but before other non-Opisthosporidia fungi, and a branching of Glomeromycota as sister to the Dikarya. Our up-to-date fungal tree of life will serve as a springboard for future investigations on the early evolution of fungi.


Assuntos
Quitridiomicetos , Microsporídios , Animais , Eucariotos , Evolução Molecular , Fungos/genética , Filogenia
6.
Environ Pollut ; 308: 119627, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714791

RESUMO

Freshwater microbes play a crucial role in the global carbon cycle. Anthropogenic stressors that lead to changes in these microbial communities are likely to have profound consequences for freshwater ecosystems. Using field data from the coordinated sampling of 617 lakes, ponds, rivers, and streams by citizen scientists, we observed linkages between microbial community composition, light and chemical pollution, and greenhouse gas concentration. All sampled water bodies were net emitters of CO2, with higher concentrations in running waters, and increasing concentrations at higher latitudes. Light pollution occurred at 75% of sites, was higher in urban areas and along rivers, and had a measurable effect on the microbial alpha diversity. Genetic elements suggestive of chemical stress and antimicrobial resistances (IntI1, blaOX58) were found in 85% of sites, and were also more prevalent in urban streams and rivers. Light pollution and CO2 were significantly related to microbial community composition, with CO2 inversely related to microbial phototrophy. Results of synchronous nationwide sampling indicate that pollution-driven alterations to the freshwater microbiome lead to changes in CO2 production in natural waters and highlight the vulnerability of running waters to anthropogenic stressors.


Assuntos
Ecossistema , Microbiota , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Lagos , Rios
7.
Commun Biol ; 5(1): 57, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042989

RESUMO

Species richness, abundance and biomass of insects have recently undergone marked declines in Europe. We metabarcoded 211 Malaise-trap samples to investigate whether drought-induced forest dieback and subsequent salvage logging had an impact on ca. 3000 species of flying insects in silver fir Pyrenean forests. While forest dieback had no measurable impact on species richness, there were significant changes in community composition that were consistent with those observed during natural forest succession. Importantly, most observed changes were driven by rare species. Variation was explained primarily by canopy openness at the local scale, and the tree-related microhabitat diversity and deadwood amount at landscape scales. The levels of salvage logging in our study did not explain compositional changes. We conclude that forest dieback drives changes in species assemblages that mimic natural forest succession, and markedly increases the risk of catastrophic loss of rare species through homogenization of environmental conditions.


Assuntos
Biodiversidade , Biomassa , Florestas , Insetos , Animais , Espécies em Perigo de Extinção , França
8.
J Fungi (Basel) ; 7(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34682274

RESUMO

Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources.

9.
Mitochondrial DNA B Resour ; 6(10): 2969-2971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34553062

RESUMO

Mayflies (Ephemeroptera) are a semi-aquatic insect order with comparatively few genomic data available despite their phylogenetic position at the root of the winged-insects and possession of ancestral traits. Here, we provide three mitochondrial genomes (mtgenomes) from representatives of the two most species-rich families, Baetis rutilocylindratus and Cloeon dipterum (Baetidae), and Habrophlebiodes zijinensis (Leptophlebiidae). All mtgenomes had a complete set of 13 protein-coding genes and a conserved orientation except for two inverted tRNAs in H. zijinensis. Phylogenetic reconstructions using 21 mayfly mtgenomes and representatives of seven additional orders recovered both Baetidae and Leptophlebiidae as well supported monophyletic clades, with Ephemeroptera as the sister-taxon to all other winged insects (i.e. Odonata and Neoptera).

10.
Infect Genet Evol ; 94: 104999, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256167

RESUMO

Ixodid ticks (Acari:Ixodidae) are essential vectors of tick-borne diseases in Japan. In this study, we characterized the population genetic structure and inferred genetic divergence in two widespread and abundant ixodid species, Ixodes ovatus and Haemaphysalis flava. Our hypothesis was that genetic divergence would be high in I. ovatus because of the low mobility of their small rodent hosts of immature I. ovatus would limit their gene flow compared to more mobile avian hosts of immature H. flava. We collected 320 adult I. ovatus from 29 locations and 223 adult H. flava from 17 locations across Niigata Prefecture, Japan, and investigated their genetic structure using DNA sequences from fragments of two mitochondrial gene regions, cox1 and the 16S rRNA gene. For I. ovatus, pairwise FST and analysis of molecular variance (AMOVA) analyses of cox1 and 16S sequences indicated significant genetic variation among populations, whereas both markers showed non-significant genetic variation among locations for H. flava. A cox1 gene tree and haplotype network revealed three genetic groups of I. ovatus. One of these groups consisted of haplotypes distributed at lower altitudes (251-471 m.a.s.l.). The cox1 sequences of I. ovatus from Japan clustered separately from I. ovatus sequences reported from China, suggesting the potential for cryptic species in Japan. Our results support our hypothesis and suggest that the host preference of ticks at the immature stage may influence the genetic structure of the ticks. This information may be important for understanding the tick-host interactions in the field to better understand the tick-borne disease transmission and in designing an effective tick control program.


Assuntos
Proteínas de Artrópodes/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Ixodidae/genética , RNA Ribossômico 16S/genética , Animais , Japão , Especificidade da Espécie
11.
Mol Ecol ; 30(19): 4601-4605, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34036646

RESUMO

In a recent paper, "Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring," Pawlowski et al. argue that the term eDNA should be used to refer to the pool of DNA isolated from environmental samples, as opposed to only extra-organismal DNA from macro-organisms. We agree with this view. However, we are concerned that their proposed two-level terminology specifying sampling environment and targeted taxa is overly simplistic and might hinder rather than improve clear communication about environmental DNA and its use in biomonitoring. This terminology is based on categories that are often difficult to assign and uninformative, and it overlooks a fundamental distinction within eDNA: the type of DNA (organismal or extra-organismal) from which ecological interpretations are derived.


Assuntos
DNA Ambiental , Biodiversidade , DNA/genética , Código de Barras de DNA Taxonômico
12.
Parasitology ; 148(13): 1602-1611, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35060465

RESUMO

Parasites are important components of biodiversity and contributors to ecosystem functioning, but are often neglected in ecological studies. Most studies examine model parasite systems or single taxa, thus our understanding of community composition is lacking. Here, the seasonal and annual dynamics of parasites was quantified using a 5-year metabarcoding time-series of freshwater plankton, collected weekly. We first identified parasites in the dataset using literature searches of the taxonomic match and using sequence metadata from the National Center for Biotechnology Information (NCBI) nucleotide database. In total, 441 amplicon sequence variants (belonging to 18 phyla/clades) were classified as parasites. The four phyla/clades with the highest relative read abundance and richness were Chytridiomycota, Dinoflagellata, Oomycota and Perkinsozoa. Relative read abundance of total parasite taxa, Dinoflagellata and Perkinsozoa significantly varied with season and was highest in summer. Parasite richness varied significantly with season and year, and was generally lowest in spring. Each season had distinct parasite communities, and the difference between summer and winter communities was most pronounced. Combining DNA metabarcoding with searches of the literature and NCBI metadata allowed us to characterize parasite diversity and community dynamics and revealed the extent to which parasites contribute to the diversity of freshwater plankton communities.


Assuntos
Parasitos , Plâncton , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Ecossistema , Água Doce , Parasitos/genética , Plâncton/genética , RNA Ribossômico 18S/genética
13.
J Fish Dis ; 44(6): 771-782, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33270932

RESUMO

Encapsulation of the parasitic nematode Anguillicola crassus Kuwahara, Niimi & Hagaki is commonly observed in its native host, the Japanese eel (Anguilla japonica Temminck & Schlegel). Encapsulation has also been described in a novel host, the European eel (A. anguilla L.), and there is evidence that encapsulation frequency has increased since the introduction of A. crassus. We examined whether encapsulation of A. crassus provides an advantage to its novel host in Lake Müggelsee, NE Germany. We provide the first evidence that encapsulation was associated with reduced abundance of adult A. crassus. This pattern was consistent in samples taken 3 months apart. There was no influence of infection on the expression of the two metabolic genes studied, but the number of capsules was negatively correlated with the expression of two mhc II genes of the adaptive immune response, suggesting a reduced activation. Interestingly, eels that encapsulated A. crassus had higher abundances of two native parasites compared with non-encapsulating eels. We propose that the response of A. anguilla to infection by A. crassus may interfere with its reaction to other co-occurring parasites.


Assuntos
Anguilla , Dracunculoidea/fisiologia , Doenças dos Peixes/parasitologia , Infecções por Spirurida/veterinária , Animais , Dracunculoidea/crescimento & desenvolvimento , Doenças dos Peixes/epidemiologia , Alemanha/epidemiologia , Lagos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Prevalência , Infecções por Spirurida/epidemiologia , Infecções por Spirurida/parasitologia
14.
Mol Phylogenet Evol ; 151: 106891, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562822

RESUMO

Caullerya mesnili is a common and virulent parasite of the water flea, Daphnia. It was classified within the Haplosporidia (Rhizaria) for over a century. However, a recent molecular phylogeny based on the 18S rRNA gene suggested it belonged to the Ichthyosporea, a class of protists closely related to animals within the Opisthokonta clade. The exact phylogenetic position of C. mesnili remained uncertain because it appeared in the 18S rRNA tree with a very long branch and separated from all other taxa, suggesting that its position could be artifactual. A better understanding of its phylogenetic position has been constrained by a lack of molecular markers and the difficulty of obtaining a suitable quantity and quality of DNA from in vitro cultures, as this intracellular parasite cannot be cultured without its host. We isolated and collected spores of C. mesnili and sequenced genomic libraries. Phylogenetic analyses of a newly generated multi-protein data set (22 proteins, 4998 amino acids) and of sequences from the 18S rRNA gene both placed C. mesnili within the Ichthyophonida sub-clade of Ichthyosporea, as sister-taxon to Abeoforma whisleri and Pirum gemmata. Our study highlights the utility of metagenomic approaches for obtaining genomic information from intracellular parasites and for more accurate phylogenetic placement in evolutionary studies.


Assuntos
Daphnia/parasitologia , Mesomycetozoea/classificação , Mesomycetozoea/genética , Fases de Leitura Aberta/genética , Parasitos/classificação , Parasitos/genética , Filogenia , Animais , Sequência de Bases , Evolução Biológica , Funções Verossimilhança , RNA Ribossômico 18S/genética
15.
Ecol Evol ; 9(23): 13069-13084, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871630

RESUMO

Invasive parasites are involved in population declines of new host species worldwide. The high susceptibilities observed in many novel hosts have been attributed to the lack of protective immunity to the parasites which native hosts acquired during their shared evolution. We experimentally infected Japanese eels (Anguilla japonica) and European eels (Anguilla anguilla) with Anguillicola crassus, a nematode parasite that is native to the Japanese eel and invasive in the European eel. We inferred gene expression changes in head kidney tissue from both species, using RNA-seq data to determine the responses at two time points during the early stages of infection (3 and 23 days postinfection). At both time points, the novel host modified the expression of a larger and functionally more diverse set of genes than the native host. Strikingly, the native host regulated immune gene expression only at the earlier time point and to a small extent while the novel host regulated these genes at both time points. A low number of differentially expressed immune genes, especially in the native host, suggest that a systemic immune response was of minor importance during the early stages of infection. Transcript abundance of genes involved in cell respiration was reduced in the novel host which may affect its ability to cope with harsh conditions and energetically demanding activities. The observed gene expression changes in response to a novel parasite that we observed in a fish follow a general pattern observed in amphibians and mammals, and suggest that the disruption of physiological processes, rather than the absence of an immediate immune response, is responsible for the higher susceptibility of the novel host.

17.
Front Plant Sci ; 10: 789, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316530

RESUMO

Nuttall's waterweed (Elodea nuttallii) is the most abundant invasive aquatic plant species in several European countries. Elodea populations often follow a boom-bust cycle, but the causes and consequences of this dynamics are yet unknown. We hypothesize that both boom and bust periods can be affected by dreissenid mussel invasions. While mutual facilitations between these invaders could explain their rapid parallel expansion, subsequent competition for space might occur. To test this hypothesis, we use data on temporal changes in the water quality and the abundance of E. nuttallii and the quagga mussel Dreissena rostriformis bugensis in a temperate shallow lake. Lake Müggelsee (Germany) was turbid and devoid of submerged macrophytes for 20 years (1970-1989), but re-colonization with macrophytes started in 1990 upon reductions in nutrient loading. We mapped macrophyte abundance from 1999 and mussel abundance from 2011 onwards. E. nuttallii was first detected in 2011, spread rapidly, and was the most abundant macrophyte species by 2017. Native macrophyte species were not replaced, but spread more slowly, resulting in an overall increase in macrophyte coverage to 25% of the lake surface. The increased abundance of E. nuttallii was paralleled by increasing water clarity and decreasing total phosphorus concentrations in the water. These changes were attributed to a rapid invasion by quagga mussels in 2012. In 2017, they covered about one-third of the lake area, with mean abundances of 3,600 mussels m-2, filtering up to twice the lake's volume every day. The increasing light availability in deeper littoral areas supported the rapid spread of waterweed, while in turn waterweed provided surface for mussel colonization. Quantities of dreissenid mussels and E. nuttallii measured at 24 locations were significantly correlated in 2016, and yearly means of E. nuttallii quantities increased with increasing mean dreissenid mussel quantities between 2011 and 2018. In 2018, both E. nuttallii and dreissenid abundances declined. These data imply that invasive waterweed and quagga mussels initially facilitated their establishment, supporting the invasional meltdown hypothesis, while subsequently competition for space may have occurred. Such temporal changes in invasive species interaction might contribute to the boom-bust dynamics that have been observed in Elodea populations.

18.
Mar Genomics ; 45: 28-37, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30616929

RESUMO

Invasive parasites have been implicated in the declines of several freshwater species. The swim bladder nematode Anguillicola crassus was introduced into Europe in the 1980s and is considered a threat to the European eel (Anguilla anguilla). Infection affects stress resistance and swimming behaviour. European eels produce an immune response against the parasite during the late stages of infection and after repeated infections. We used RNA-seq to examine the molecular response to infection during the poorly understood early stage and identify expression of genes and associated processes that are modified in two immune organs of European eels 3 days post infection with A. crassus. In the spleen, 67 genes were differentially expressed, 32 of which were annotated. Most of these were involved in immune processes and their regulation. Other differentially expressed genes in the spleen were important for heme metabolism and heme turn-over. In the head kidney, 257 genes (134 annotated) were differentially expressed. Several of these were associated with immune functions. Other differentially expressed genes in the head kidney were related to renal function, in particular osmoregulation and paracellular flow. We conclude that the early response of European eels to A. crassus is complex and involves various processes aside from the immune system. We identified molecular changes occurring early during the infection and identified candidate genes and processes which will facilitate future studies aimed at determining the factors affecting European eel viability in the face of this invasive parasite.


Assuntos
Anguilla , Dracunculoidea/fisiologia , Doenças dos Peixes/imunologia , Expressão Gênica/imunologia , Infecções por Spirurida/veterinária , Animais , Doenças dos Peixes/genética , Rim Cefálico/imunologia , Infecções por Spirurida/genética , Infecções por Spirurida/imunologia , Baço/imunologia
19.
BMC Genomics ; 19(1): 932, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547741

RESUMO

BACKGROUND: Regulatory circuits of infection in the emerging experimental model system, water flea Daphnia and their microparasites, remain largely unknown. Here we provide the first molecular insights into the response of Daphnia galeata to its highly virulent and common parasite Caullerya mesnili, an ichthyosporean that infects the gut epithelium. We generated a transcriptomic dataset using RNAseq from parasite-exposed (vs. control) Daphnia, at two time points (4 and 48 h) after parasite exposure. RESULTS: We found a down-regulation of metabolism and immunity-related genes, at 48 h (but not 4 h) after parasite exposure. These genes are involved in lipid metabolism and fatty acid biosynthesis, as well as microbe recognition (e.g. c-type lectins) and pathogen attack (e.g. gut chitin). CONCLUSIONS: General metabolic suppression implies host energy shift from reproduction to survival, which is in agreement with the known drastic reduction in Daphnia fecundity after Caullerya infection. The down-regulation of gut chitin indicates a possible interaction between the peritrophic matrix and the evading host immune system. Our study provides the first description of host transcriptional responses in this very promising host-parasite experimental system.


Assuntos
Daphnia/genética , Sistema Imunitário/metabolismo , Intestinos/parasitologia , Metabolismo dos Lipídeos/genética , Mesomycetozoea/fisiologia , Animais , Daphnia/metabolismo , Regulação para Baixo , Ácido Graxo Sintases/genética , Interações Hospedeiro-Parasita , Sistema Imunitário/parasitologia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Transcriptoma
20.
Mol Ecol Resour ; 18(6): 1500-1514, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30106226

RESUMO

DNA metabarcoding is widely used to study prokaryotic and eukaryotic microbial diversity. Technological constraints limit most studies to marker lengths below 600 base pairs (bp). Longer sequencing reads of several thousand bp are now possible with third-generation sequencing. Increased marker lengths provide greater taxonomic resolution and allow for phylogenetic methods of classification, but longer reads may be subject to higher rates of sequencing error and chimera formation. In addition, most bioinformatics tools for DNA metabarcoding were designed for short reads and are therefore unsuitable. Here, we used Pacific Biosciences circular consensus sequencing (CCS) to DNA-metabarcode environmental samples using a ca. 4,500 bp marker that included most of the eukaryote SSU and LSU rRNA genes and the complete ITS region. We developed an analysis pipeline that reduced error rates to levels comparable to short-read platforms. Validation using a mock community indicated that our pipeline detected 98% of chimeras de novo. We recovered 947 OTUs from water and sediment samples from a natural lake, 848 of which could be classified to phylum, 397 to genus and 330 to species. By allowing for the simultaneous use of three databases (Unite, SILVA and RDP LSU), long-read DNA metabarcoding provided better taxonomic resolution than any single marker. We foresee the use of long reads enabling the cross-validation of reference sequences and the synthesis of ribosomal rRNA gene databases. The universal nature of the rRNA operon and our recovery of >100 nonfungal OTUs indicate that long-read DNA metabarcoding holds promise for studies of eukaryotic diversity more broadly.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Fungos/classificação , Fungos/genética , Metagenômica/métodos , RNA Fúngico/genética , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Filogenia , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...